
1

SEI CMM Level 4 Quantitative Analysis
Real Project Examples

Al Florence
December, 1999

MITRE Corporation

The views expressed are those of the author and do not reflect the official policy or position of
the MITRE Corporation

Key Words

• Quantitative Process Management
• Software Quality Management
• Defect Prevention
• Quantitative Analysis
• Statistical Process Control
• Control Charts

Abstract

The Software Engineering Institute’s (SEI) Software (SW) Capability Maturity Model (CMM)
Level 4 Quantitative Analysis leads into SW-CMM Level 5 activities. Level 4 Software Quality
Management (SQM) Key Process Area (KPA) analysis, which focuses on product quality, feeds
the activities required to comply with Defect Prevention (DP) at Level 5.[1] Quantitative
Process Management (QPM) at Level 4 focuses on the process which leads to Technology
Change Management (TCM) and Process Change Management (PCM) at Level 5. At Level 3,
metrics are collected, analyzed and used to status development and to make corrections to
development efforts, as necessary. At Level 4, metrics are quantitatively analyzed to control
process performance of the project and to develop a quantitative understanding of the quality of
products to achieve specific quality goals. At Level 5, the Level 4 analysis is used, as
appropriate, to investigate and incorporate new processes and technologies and for the
prevention of defects.

This paper presents the application of Statistical Process Control (SPC) in accomplishing the
intent of SQM and QPM and applying the results to DP. Real project results are used to
demonstrate the use of SPC as applied in a software setting. Presented are the processes that the
author formulated, launched and conducted on a large software development effort. The
organization had obtained SW-CMM Level 3 compliance and was pursuing Level 4 and Level 5.
All Level 4 and Level 5 processes were installed and conducted on the project over a period of
time. The main quantitative tool used was Statistical Process Control utilizing control charts.
The project analyzed life cycle metrics collected during development for requirements, design,
coding, integration, and during testing. Defects were collected during these life cycle phases and
were quantitatively analyzed using statistical methods. The intent was to use this analysis to
support the project in developing and delivering high quality products and at the same time using
the information to make improvements, as required, to the development process.

2

Introduction

This introduction presents an overview of SPC and why it is applied to software. It presents a
review of the Level 4 KPAs and Defect Prevention at Level 5. Next, Level 4 quality goals and
plans to meet those goals are described followed by some real project examples in applying SPC
to real project data.

Control Charts

Figure 1 shows a control chart and demonstrates how control charts are used for this analysis.[3]
According to the normal distribution, 99% of all normal random values lie within +/-3 standard
deviations from the norm, 3-sigma.[3] If a process is mature and under statistical process
control, all events should lie within the upper and lower control limits. If an event falls out of
the control limits the process is said to out of statistical process control and the reason for this
anomaly needs to be investigated for cause and the process brought back under control.

 Figure 1. Control Chart

Control charts are used because they separate signal from noise, so when anomalies occur they
can be recognized. They identify undesirable trends and point out fixable problems and potential
process improvements. Control charts show the capability of the process, so achievable goals
can be set. They provide evidence of process stability, which justifies predicting process
performance.

Control charts use two types of data: variables data and attributes data. Variables data are
usually measurements of continuous phenomena. Examples of variables data in software
settings are elapsed time, effort expanded, and memory/CPU utilization. Attributes data are
usually measurements of discrete phenomena such as number of defects, number of source
statements, and number of people. Most measurements in software used for SPC are attributes
data. It is important to use the correct data on a particular type of control chart.[3]

Quantitative Analysis Flow

Figure 2 shows the Level 4 Quantitative Analysis process flow for Software Quality
Management and for Quantitative Process Management.[1]

Time

Measurements

3 Standard Deviations (+ 3 sigma)

Determine Cause of Deviation

Determine Cause of Deviation

Center Line

Upper Control Limit

Lower Control Limit

3 Standard Deviations (- 3 sigma)

3

Figure 2. SQM and QPM Flow

When conducting quantitative analysis on project data the results can be used for both Software
Quality Management and for Quantitative Process Management. If the data analyzed are defects
detected, the intent is to reduce the defects during the activities that detected the defects
throughout development, thus satisfying SQM. When out of statistical control conditions occur,
the reason for the anomaly is investigated and the process brought back under control which
satisfies QPM.

Defect Prevention Flow

Figure 3 shows the Level 5 Defect Prevention process flow.[1]

 Figure 3. DP Flow

Per for m
Tr a in ing/O r ien t a t ion

C or r ect ive Act ion
Pla n

C on d u ct
Qu a n t ita t ive
An a lysis

M easu r esWor k in
P r ogr ess

Im p le m e nt
C or re ct ive

A ction (s)

E sta b lish
P la n s/G oa ls

Level 4 PAT
Management

Defects
Computer Resources

Start

Project Management
Analysis Staff

Project StaffProject Staff

Modifications
Needed

Project Staff
Management

PAT - Process Action Team

Analysis Team
Anomaly

L essons
L ear n ed

Other Reasons

P e r for m
T r a in in g / K ic ko ff

M eet in g

C o n du ct
C a u sa l A n a l ys is

I d e n ti fy/C a te g or ize
D efe ct s

W o r k i n
P r og re ss

D efect
P r e ven t ion

P la n

Star t

M anagement

Ana lysis Tea m

Project Sta ff Project S ta ff

R ec or d
L e ss on s L ea rn ed

C o n d u ct
A n al ys is

(Q u a n ti ta t iv e or O th er)

No An oma ly

Anomaly Or
Ot her Reason(s)

Ana lysis Team

Analysis Tea m

4

Defects can occur during any life cycle activity against any and all entities. How often do we see
requirements that are without problems or schedules that are adequate or management that is
sound? Defect Prevention activities are conducted on any defects that warrant prevention.
Defect prevention techniques can be applied to a variety of items:

• Project Plans
• Project Schedules
• Standards
• Processes
• Procedures
• Project Resources
• Requirements
• Documentation
• Quality Goals
• Design
• Code
• Interfaces
• Test Plans
• Test Procedures
• Technologies
• Training
• Management
• Engineering

Level 4 Feeds Level 5

Figure 4 shows how data collection, analysis and management from Level 4 activities lead to the
activities at Level 5 of Defect Prevention, Technology Change Management, and Process
Change Management KPAs.[5]

 Figure 4. Level 4 and Level 5 Paths of Influence

Quantitative Process Management, which focuses on the process, leads to making process and
technology improvements while Software Quality Management, which focuses on quality, leads
to preventing defects.

Level 4 Level 5

 Quantitative
Process Management

 Software
Quality Management

Defect Prevention

 Technology
Change Management

 Process
Change Management

5

Level 4 Goals and Plans

The CMM requires that Level 4 goals, and plans to meet those goals, be based on the processes
implemented, that is, on the processes’ proven ability to perform.[1] Goals and plans must also
reflect contract requirements. As the project’s process capabilities and/or contract requirements
change, the goals and plans may need to be adjusted.

The project that this paper is based on had the following key requirements:

• Timing - subject search response in less than 2.8 seconds 98% of time
• Availability - 99.86% 7 days, 24 hours (7/24)

These are driving requirements that constrain hardware and software architecture and design. To
satisfy these requirements, the system needs to be highly reliable and with sufficiently fast
hardware.

Goals

The planned quality goals are:

• Deliver a near defect free system
• Meet all critical computer performance goals

Plans

The plans to meet these goals are:

• Defect detection and removal during
− Requirements peer reviews
− Design peer reviews
− Code peer reviews
− Unit tests
− Thread tests
− Integration and test
− Formal tests

• Monitoring of critical computer resources
− General purpose million instructions per second (MIPS)
− Disc storage read inputs/outputs per second (IOPS) per volume
− Write IOPS per volume
− Operational availability
− Peak response time
− Server loading

Quantitative Analysis Examples

The following are real examples from the project discussed above applying SPC to real data over
a period of two years.

6

Example 1

Table 1 shows raw data collected at code peer reviews over a period of months. Each sample
represents a series of peer reviews over several weeks. The “units” are units of code and the
“SLOC” is the number of source lines of code (SLOC) review for that sample. The “defects” are
the number of defects detected for that sample normalized to 1000 lines of code in the last
column.

Table 1. Code Peer Review Defects

Sample Units SLOC Defects Defects/KSLOC
1. Mar 1998 6 515 15 29.12
2. Apr 1998 10 614 16 26.06
3. Apr 1998 7 573 7 12.22
4. Apr 1998 7 305 7 22.95
5. Apr 1998 4 350 21 60
6. Apr 1998 3 205 2 9.76
7. Apr 1998 8 701 11 15.69
8. May 1998 3 319 3 9.40
Totals 76 3582 72

The formulas for constructing the control chart follow.[3] The control chart used is a U-chart.

• Defects/KSLOC = Number of Defects * 1000/SLOC reviewed per sample (calculated
for each sample). These are plotted as Plot.

• CL = Total Number of Defects/Total number of KSLOC reviewed * 1000
• a(1) = SLOC reviewed/1000 (calculated for each sample)
• UCL = CL+3(SQRT(CL/a(1)) (calculated for each sample)
• LCL = CL-3(SQRT(CL/a(1)) (calculated for each sample)

The defects per 1000 lines of code is the plot on the chart. The center line (CL) is an average
while a(1) is a variable calculated for each sample. The upper control limit (UCL) and the lower
control limit (LCL) are also calculated for each sample. The calculations are shown in Table 2.
Whenever the LCL is negative, it is set to zero.

 Table 2. Calculations for Code Peer Review Defects

Sample Plot CL UCL LCL a(1)
1. Mar 1998 29.13 20.1 38.84 1.36 0.515
2. Apr 1998 26.06 20.1 37.27 2.96 0.614
3. Apr 1998 12.22 20.1 37.87 2.333 0.573
4. Apr 1998 22.96 20.0 44.45 0 0.305
5. Apr 1998 60 20.1 42.84 0 0.35
6. Apr 1998 9.76 20.1 49.80 0 0.205
7. Apr 1998 15.71 20.1 36.16 4.04 0.701
8. May 1998 9.40 20.1 43.91 0 0.319

7

The control chart is shown in Figure 5.

Figure 5. Control Chart for Code Peer Review Defects

An anomaly occurred in the fifth sample. Causal analysis revealed that data for that sample were
for database code, all others were applications code. Control charts require similar data for
similar processes, i.e., apples to apples analogy. The database sample was removed and the data
charted again as shown in Figure 6.

Figure 6. Control Chart without Database Defects

The process in now under statistical process control. The root cause is that data gathered from
dissimilar activities cannot be used on the same statistical process on control charts. Data from
design cannot be combined with data from coding. The process for database design and code is
different from that used for applications design and code as are the teams and methodologies.
The defect prevention is against the process of collecting data for SPC control charts.

0

10

20

30

40

50

60

70

0 2 4 6 8 10

 Plot

 CL

 UCL

 LCL

0

10

20

30

40

50

60

0 2 4 6 8

 Plot

 CL

 UCL

 LCL

8

Example 2

Table 3 shows raw data collected during code peer reviews.

Table 3. Code Peer Review Defects

Sample Units SLOC Defects Defects/KSLOC
1. Feb 1997 17 1705 62 36.36
2. Mar 1997 18 1798 66 36.70
3. Mar 1997 15 1476 96 65.04
4. Mar 1997 19 1925 57 29.61
5. Mar 1997 17 1687 78 46.24
6. Apr 1997 18 1843 66 35.81
Totals 104 10434 425

The calculations are shown in Table 4.

Table 4. Calculations for Code Peer Review Defects

Sample Plot CL UCL LCL A(1)
1. Feb 1997 36.4 40.73 55.4 26.09 1.7
2. Mar 1997 36.7 40.73 55.01 26.45 1.8

3. Mar 1997 65 40.73 56.49 24.97 1.5
4. Mar 1997 29.6 40.73 54.53 26.93 1.9
5. Mar 1997 45.2 40.73 55.47 25.99 1.7
6. Apr 1997 35.8 40.73 54.84 26.63 1.8

The control chart is shown in Figure 7.

Figure 7. Control Chart for Code Peer Review Defects

The process is out of statistical process control in the third event. Causal analysis revealed that
this was caused when the project introduced coding standards and many coding violations were

0

10

20

30

40

50

60

70

1 . Feb

1997

2. Mar

1997

3. Mar

1997

4. Mar

1997

5 . Mar

1997

6. Apr

1997

Plot

CL

UCL

LCL

9

injected. The root cause is lack of knowledge of the coding standards and the defect prevention
is to provide training whenever a new process or technology is introduced.

Example 3

During integration thread tests, the defects were categorized against the test plan, test data, code
logic, interfaces, standards, design, and requirements. Defects against these attributes are shown
in Table 5.

Table 5. Thread Test’s Defects

Samples Test Plan Test Data Logic Interface Standards Design Requirements
1 2 6
2 10
3 1 9 3
4 2 1 13
5 1 7
6 10 14
7 4 2
8 28
9 2
10 6
11 1 1
12 10
13 9 1
14 6 1 1
15 5 7
16 2 1
Totals 6 102 55 1 2

Bar chars were used in Figure 8 to show defects discovered during integration thread tests.

Figure 8. Thread Test Defects Bar Chart

Totals

0
20
40
60
80

100
120

Tes
t P

lan

Tes
t D

at
a

Lo
gic

In
te

rfa
ce

Sta
nd

ar
ds

Des
ign

Req
uir

em
en

ts

Totals

10

Test data would not be expected to have the majority of defect. The root cause was that the test
data in the test procedures had not been peer reviewed. The defect prevention is to peer review
the test procedures and the test data.

Example 4

During preliminary design and prior to acquiring hardware, a simulated performance model was
used to monitor critical computer resources. Figure 9 shows some results of monitoring general
purpose MIPS.

Figure 9. General Purpose MIPS

Around November 1995 many new requirements were added to the system and the architecture’s
MIPS threshold was threatened because of increased computations. In May 1996 additional
MIPS were added to the hardware design and the problem was corrected.

Conclusion

Statistical process control and the use of control charts can be effectively used in a software
setting. SPC can identify undesirable trends and point out fixable problems and potential process
improvements. Control charts can show the capability of the process, so achievable goals can be
set. They can provide evidence of process stability, which can justify predicting process
performance.

0

500

1000

1500

2000

2500

3000

Mar-94 Sep-94 Apr-95 Oct-95 May-96 Dec-96 Jun-97

Date

Estimated Usage

Available
Threshold

M I P S

11

References
and

Suggested Reading

1. Mark C. Paulk, Bill Curtis, Mary Beth Chrissis, Charles V. Weber, February 1993,
Capability Maturity Model for Software, V1.1, Software Engineering Institute

2. John H. Baumert, Mark S. McWhinney, 1992, Software Measures and the Capability
Maturity Model, Software Engineering Institute

3. William A. Florac, Robert E. Park, Anita D. Carleton, SEI, April, 1997, Practical Software
Measurement: Measuring for Process Management and Improvement, Software Engineering
Institute

4. Thomas Pyzdek, 1984, An SPC Primer, Quality America, Inc.
5. Ron Radice , 1997, Getting to Level 4 in the CMM, The 1997 SEI Software Engineering

Process Group Conference, San Jose, CA
6. Anita Carleton, Mark C. Paulk, 1997, Statistical Process Control for Software, The 1997

Software Engineering Symposium, Pittsburgh, PA
7. David S. Chambers & Donald J. Wheeler, 1995, Understanding Statistical Process Control,

SPC Press
8. Juran’s Quality Control Handbook, 1988, 4th Edition, McGraw-Hill Book Company
9. Donald J. Wheeler, 1993, Understanding Variation, The Key to Managing Chaos, SPC Press
10. Donald J. Wheeler, 1995, Advanced Topics in Statistical Process Control, SPC Press
11. W. Edwards Deming, November 1975, On Probability As a Basis For Action, The American

Statistician, Vol. 29, No.4 (146-152)
12. Gerald J. Hahn & William Q. Meeker, February 1993, Assumptions for Statistical Inference,

The American Statistician, Vol. 47, No.1 (1-11)
13. Watts S. Humphrey, September 1997, Managing the Software Process, SEI Series in

Software Engineering, Addison-Wesley Publishing Company

